首页> 外文OA文献 >Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study
【2h】

Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study

机译:对称二元流体混合物的三维旋节分解中的惯性效应:格子玻尔兹曼研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The late-stage demixing following spinodal decomposition of a three-dimensional symmetric binary fluid mixture is studied numerically, using a thermodynamically consistent lattice Boltzmann method. We combine results from simulations with different numerical parameters to obtain an unprecedented range of length and time scales when expressed in reduced physical units. (These are the length and time units derived from fluid density, viscosity, and interfacial tension.) Using eight large (2563) runs, the resulting composite graph of reduced domain size l against reduced time t covers 1 [less, similar] l [less, similar] 105, 10 [less, similar] t [less, similar] 108. Our data are consistent with the dynamical scaling hypothesis that l(t) is a universal scaling curve. We give the first detailed statistical analysis of fluid motion, rather than just domain evolution, in simulations of this kind, and introduce scaling plots for several quantities derived from the fluid velocity and velocity gradient fields. Using the conventional definition of Reynolds number for this problem, Reφ = ldl/dt, we attain values approaching 350. At Reφ [greater, similar] 100 (which requires t [greater, similar] 106) we find clear evidence of Furukawa's inertial scaling (l [similar] t2/3), although the crossover from the viscous regime (l [similar] t) is both broad and late (102 [less, similar] t [less, similar] 106). Though it cannot be ruled out, we find no indication that Reφ is self-limiting (l [similar] t1/2) at late times, as recently proposed by Grant & Elder. Detailed study of the velocity fields confirms that, for our most inertial runs, the RMS ratio of nonlinear to viscous terms in the Navier-Stokes equation, R2, is of order 10, with the fluid mixture showing incipient turbulent characteristics. However, we cannot go far enough into the inertial regime to obtain a clear length separation of domain size, Taylor microscale, and Kolmogorov scale, as would be needed to test a recent 'extended' scaling theory of Kendon (in which R2 is self-limiting but Reφ not). Obtaining our results has required careful steering of several numerical control parameters so as to maintain adequate algorithmic stability, efficiency and isotropy, while eliminating unwanted residual diffusion. (We argue that the latter affects some studies in the literature which report l [similar] t2/3 for t [less, similar] 104.) We analyse the various sources of error and find them just within acceptable levels (a few percent each) in most of our datasets. To bring these under significantly better control, or to go much further into the inertial regime, would require much larger computational resources and/or a breakthrough in algorithm design.
机译:使用热力学一致的格子玻尔兹曼方法,对三维对称二元流体混合物的旋节线分解后的后期混合进行了数值研究。当以减少的物理单位表示时,我们将模拟结果与不同的数值参数结合起来,获得了前所未有的长度和时间范围。 (这些是从流体密度,粘度和界面张力得出的长度和时间单位。)使用8个较大的(2563)行程,得到的减小的畴尺寸l与减小的时间t的合成图覆盖了1 [较少,相似] l [更少,相似] 105,10 [更少,相似] t [更少,相似]108。我们的数据与l(t)是通用比例曲线的动态比例假设相一致。在这种模拟中,我们对流体运动进行了首次详细的统计分析,而不仅仅是域演化,并介绍了从流体速度和速度梯度场导出的多个量的比例图。使用雷诺数对该问题的常规定义,Reφ= ldl / dt,我们获得的值接近350。在Reφ[更大,相似] 100(需要t [更大,相似] 106)时,我们找到了古河惯性定标的清晰证据。 (l [相似] t2 / 3),尽管与粘性状态(l [相似] t)的交叉既宽又晚(102 [较少,相似] t [较少,相似] 106)。尽管不能排除它,但正如Grant&Elder最近提出的那样,我们没有发现Reφ在晚期具有自限性(l t1 / 2)。对速度场的详细研究证实,对于我们的大多数惯性运行,Navier-Stokes方程R2中的非线性项与粘性项的RMS之比为10阶,并且流体混合物显示出初始湍流特性。但是,我们无法深入到惯性体系中来获得域大小,泰勒微尺度和Kolmogorov尺度的清晰的长度分隔,这是检验最近的Kendon的“扩展”尺度理论(其中R2是自限制,但不限制)。要获得我们的结果,需要仔细控制几个数控参数,以保持足够的算法稳定性,效率和各向同性,同时消除不必要的残留扩散。 (我们认为后者会影响文献中的某些研究,这些研究报告l [相似] t2 / 3等于t [较少,相似]104。)我们分析了各种误差源,发现它们都在可接受的水平内(每个误差百分之几) )在我们的大多数数据集中。为了使它们处于更好的控制之下,或者进一步进入惯性状态,将需要更多的计算资源和/或算法设计上的突破。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号